Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A planet’s orbital alignment places important constraints on how a planet formed and consequently evolved. The dominant formation pathway of ultra-short-period planets (P < 1 day) is particularly mysterious as such planets most likely formed further out, and it is not well understood what drove their migration inwards to their current positions. Measuring the orbital alignment is difficult for smaller super-Earth/sub-Neptune planets, which give rise to smaller amplitude signals. Here we present radial velocities across two transits of 55 Cancri (Cnc) e, an ultra-short-period super-Earth, observed with the Extreme Precision Spectrograph. Using the classical Rossiter–McLaughlin method, we measure 55 Cnc e’s sky-projected stellar spin–orbit alignment (that is, the projected angle between the The star 55 Cancri (Cnc) A hosts five known exoplanets with minimum mass estimates ranging from approximately 8M⊕ to 3MJup and periods less than one day to nearly 20 years1–4. Of particular interest has been 55 Cnc e, one of the most massive known ultra-short-period planets (USPs) and the only planet around 55 Cnc found to transit5,6. It has an star’s spin axis and the planet’s orbit normal—will shed light on the formation and evolution of USPs, especially in the case of compact, multiplanet systems. It has been shown that USPs form a statistically distinct popula- tion of planets9 that tend to be misaligned with other planetary orbits in their system10. This suggests that USPs experience a unique migra- tion pathway that brings them close in to their host stars. This inward migration is most likely driven by dissipation due to star–planet tidal interactions that result from either non-zero eccentricities11,12 or plan- etary spin-axis tilts13. orbital period of 0.7365474 +1.3 × 10−6 days, a mass of 7.99 ± 0.33M −1.4 × 10−6 ⊕ and a radius of 1.853 +0.026 R⊕ (refs. 7,8). A precise measure of the −0.027 stellar spin–orbit alignment of 55 Cnc e—the angle between the host planet’s orbital axis and its host star’s spin axis) to be λ = 10 +17∘ with an +14∘ −20∘ unprojected angle of ψ = 23 −12∘. The best-fit Rossiter–McLaughlin model to the Extreme Precision Spectrograph data has a radial velocity semi- amplitude of just 0.41 +0.09 m s−1. The spin–orbit alignment of 55 Cnc e −0.10 favours dynamically gentle migration theories for ultra-short-period planets, namely tidal dissipation through low-eccentricity planet–planet interactions and/or planetary obliquity tides.more » « less
-
Abstract M-dwarf stars provide us with an ideal opportunity to study nearby small planets. The HUnting for M Dwarf Rocky planets Using MAROON-X (HUMDRUM) survey uses the MAROON-X spectrograph, which is ideally suited to studying these stars, to measure precise masses of a volume-limited (<30 pc) sample of transiting M-dwarf planets. TOI-1450 is a nearby (22.5 pc) binary system containing a M3 dwarf with a roughly 3000 K companion. Its primary star, TOI-1450A, was identified by the Transiting Exoplanet Survey Satellite (TESS) to have a 2.04 days transit signal, and is included in the HUMDRUM sample. In this paper, we present MAROON-X radial velocities (RVs) which confirm the planetary nature of this signal and measure its mass at nearly 10% precision. The 2.04 days planet, TOI-1450A b, hasRb= 1.13 ± 0.04R⊕andMb= 1.26 ± 0.13M⊕. It is the second-lowest-mass transiting planet with a high-precision RV mass measurement. With this mass and radius, the planet’s mean density is compatible with an Earth-like composition. Given its short orbital period and slightly sub-Earth density, it may be amenable to JWST follow-up to test whether the planet has retained an atmosphere despite extreme heating from the nearby star. We also discover a nontransiting planet in the system with a period of 5.07 days and a . We also find a 2.01 days signal present in the systems’s TESS photometry that likely corresponds to the rotation period of TOI-1450A’s binary companion, TOI-1450B. TOI-1450A, meanwhile, appears to have a rotation period of approximately 40 days, which is in line with our expectations for a mid-M dwarf.more » « less
-
Abstract We present the 30 minutes cadence Kepler/K2 light curve of the Type Ia supernova (SN Ia) SN 2018agk, covering approximately one week before explosion, the full rise phase, and the decline until 40 days after peak. We additionally present ground-based observations in multiple bands within the same time range, including the 1 day cadence DECam observations within the first ∼5 days after the first light. The Kepler early light curve is fully consistent with a single power-law rise, without evidence of any bump feature. We compare SN 2018agk with a sample of other SNe Ia without early excess flux from the literature. We find that SNe Ia without excess flux have slowly evolving early colors in a narrow range ( g − i ≈ −0.20 ± 0.20 mag) within the first ∼10 days. On the other hand, among SNe Ia detected with excess, SN 2017cbv and SN 2018oh tend to be bluer, while iPTF16abc’s evolution is similar to normal SNe Ia without excess in g − i . We further compare the Kepler light curve of SN 2018agk with companion-interaction models, and rule out the existence of a typical nondegenerate companion undergoing Roche lobe overflow at viewing angles smaller than 45°.more » « less
-
Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ .more » « less
An official website of the United States government
